这是一个很有意思的特效,模拟摄像机拍摄电视屏幕画面时出现点状颗粒的效果。颗粒的大小通过变换矩阵实现,可以任意调节,有兴趣研究的朋友可以尝试更多的效果,代码没有经过优化,只是一个粗糙的Demo,大家可以自行改进。

1.获取图像数据

1
2
3
4
5
6
img.src = ’http:
//bloglaotou.duapp.com/wp-content/themes/frontopen2/tools/filter/p_w_picpath2.jpg’;
canvas.width = img.width;
canvas.height = img.height;
var
context = canvas.getContext(“2d”);
context.drawImage(img, 0, 0);
var
canvasData = context.getImageData(0, 0, canvas.width, canvas.height);

2.设置过滤矩阵

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
var
m_VideoType=0;
var
pattern=
new
Array();
switch
(m_VideoType)
{
case0:
//VIDEO_TYPE.VIDEO_STAGGERED:
{
pattern = [
0, 1,
0, 2,
1, 2,
1, 0,
2, 0,
2, 1,
];
break
;
}
case1:
//VIDEO_TYPE.VIDEO_TRIPED:
{
pattern = [
0,
1,
2,
];
break
;
}
case2:
//VIDEO_TYPE.VIDEO_3X3:
{
pattern =
[
0, 1, 2,
2, 0, 1,
1, 2, 0,
];
break
;
}
default
:
{
pattern =
[
0, 1, 2, 0, 0,
1, 1, 1, 2, 0,
0, 1, 2, 2, 2,
0, 0, 1, 2, 0,
0, 1, 1, 1, 2,
2, 0, 1, 2, 2,
0, 0, 0, 1, 2,
2, 0, 1, 1, 1,
2, 2, 0, 1, 2,
2, 0, 0, 0, 1,
1, 2, 0, 1, 1,
2, 2, 2, 0, 1,
1, 2, 0, 0, 0,
1, 1, 2, 0, 1,
1, 2, 2, 2, 0,
];
break
;
}
}
var
pattern_width = [ 2, 1, 3, 5 ];
var
pattern_height = [6, 3, 3, 15 ];

3.获取过滤数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
for
(
var
x = 0; x < canvasData.width; x++) {
for
(
var
y = 0; y < canvasData.height; y++) {
// Index of the pixel in the array
var
idx = (x + y * canvasData.width) * 4;
var
r = canvasData.data[idx + 0];
var
g = canvasData.data[idx + 1];
var
b = canvasData.data[idx + 2];
var
nWidth = pattern_width[m_VideoType];
var
nHeight = pattern_height[m_VideoType];
var
index = nWidth * (y % nHeight) + (x % nWidth);
index = pattern[index];
if
(index == 0)
var
r = fclamp0255(2 * r);
if
(index == 1)
var
g = fclamp0255(2 * g);
if
(index == 2)
var
b = fclamp0255(2 * b);
// assign gray scale value
canvasData.data[idx + 0] = r;
// Red channel
canvasData.data[idx + 1] = g;
// Green channel
canvasData.data[idx + 2] = b;
// Blue channel
canvasData.data[idx + 3] = 255;
// Alpha channel
// 加上黑色的边框
if
(x < 8 || y < 8 || x > (canvasData.width - 8) || y > (canvasData.height - 8))
{
canvasData.data[idx + 0] = 0;
canvasData.data[idx + 1] = 0;
canvasData.data[idx + 2] = 0;
}
}
}

4.写入过滤后的数据

1
context.putImageData(canvasData, 0, 0);

5.效果预览

点击预览

5.参考资料